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Uniqueness for the BBGKY Hierarchy for 
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We prove that the stationary BBGKY hierarchy for an infinite system of 
hard spheres in one dimension has a unique solution for all densities, 
within a symmetry class that pertains to either a fluid array or to a perfect 
crystalline array. The solution is shown to correspond to the uniform fluid, 
which is the only equilibrium state of the infinite system. The proof is sub- 
ject to the recursion relation for the correlation functions found by Salsburg, 
Zwanzig, and Kirkwood, which we show exactly reduces the infinite hierar- 
chy to a pair of coupled equations. A brief discussion is given of the existence 
of multiple solutions of an approximate BBGKY equation. 
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1. I N T R O D U C T I O N  

W e  consider  a classical  hard-sphere  system o f  N ident ical  par t ic les  on an  
interval  o f  length L, in the  l imit  N - +  0% L - +  oo, with NIL = p, the number  
densi ty,  fixed. The po ten t ia l  energy U, for  a subset  o f  n part icles  a t  the 

pos i t ions  xz, . . . ,  x ,  is given by 

V~(xl , . . . ,x~) = ~ ~ u(]x,j[) ( l a )  
l < f < J < r ~  

with 

and  

x~ - xj  = x~j ( l b )  

. ( Ix , , I )  = oo, Ix~,l < d 
Oc)  

= O, [x,jl t> d 

where d is the length o f  a part icle .  
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If  O~(xx ..... x~) denotes the probability density for finding particles 
simultaneously at xl,..., xn, independent of the positions of all other particles 
in the system, then correlation functions Gn(xx .... , x~) can be defined by 

p.(xx ..... x . ) /p  ~ = G.(xx .... , x~) (2) 

For the hard-sphere potential, it is convenient to deal with the functions G~*, 
which are defined so that they are continuous at lx~j[ = d, for any i, j in the 
subset, 

G.*(x l  ..... x . ) =  @xp[/3 ~ ~ u(Ixijl)]'tG.(xx,...,j) XT~ ) (3) 
X < i <  j--_'o, 

with/3 = 1/kBT, where T is the absolute temperature and kB is Boltzmann's 
constant. The functions Gx* and G1 are identical since the interaction contains 
no terms that depend on the position of just a single particle, and if all 
Ix~jl >/ d, G.* - G~. 

In terms of these functions, the BBGKY hierarchy of equations is 

Vx~ In Gn*(xl .... , x . )  

= -p/~ dx.+xexp -/3 ~ u([xj - x .+xl)  G.*(xx .... , x~)  
j = l  

| Vx~u(lxi - x~+xl), n = 1, 2, 3 .... (4) 

where x~ is any one of the positions, and the integration is over the entire 
line, -oo  < xn+t < oo. 

In this paper we investigate the solutions of (4). We note that the 
hierarchy of equations does not form a closed set, that is, one needs the 
function G*,+x in order to obtain an equation for G J .  An exact recursion 
relation for the correlation functions in the one-dimensional hard-sphere 
system has been computed by Salsburg, Zwanzig, and Kirkwood (x> (SZK). 
The recursion relation was obtained (l> by directly integrating the classical 
phase space probability density, using the method of residues. One can 
choose, for convenience, a particular ordering of the particle positions and, 
because (lc), the arbitrarily chosen ordering will remain unchanged for all 
interparticle separations in the one-dimensional system. Furthermore, because 
the range of the potential energy is just the point d, the only terms in (1) that 
contribute in the ordered array are nearest neighbors. 

Using these properties, SZK were able to show that for the ordered array 
xl < xz < ".. < xn, there is an exact recursion relation 

G.+x(xx,...,x.+3 G2(x~,x~+x) 
- ( 5 )  

Gn(xx ..... xO GI(x , )  

and by applying (lc) and (3) one finds that this recursion relation applies 
to the functions Gin*. 
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The purpose of this paper is to study the solution of the hierarchy (4) 
subject to the SZK recursion relation (5). We will show, in Section 2, that (5) 
is an exact truncation of the hierarchy; that is, for all n > 2, the recursion 
relation yields the same equation as is obtained at n = 2. Therefore with (5), 
the infinite hierarchy is reduced to coupled equations for the pair (G~, G~). 
Then, in Section 3, we study this pair and we ask whether its solution is 
unique. We prove that, within a certain symmetry class, which includes cor- 
relation functions for both uniform and crystalline arrays, the solution is in 
fact unique for all densities. We show that the solution corresponds to the 
uniform fluid, which is known to be the only equilibrium state of  the infinite 
system. 

The discussion is given in Section 4. We briefly consider the uniqueness 
result in terms of recent investigations of  a molecular theory of crystallization 
based on the BBGKY equationsJ 2'3> The result of the theory for the one- 
dimensional hard-sphere system (2,3> is, in fact, the motivation of this 
investigation. 

2.  T H E  S Z K  R E C U R S I O N  R E L A T I O N  

The hard-sphere interaction is such that in one dimension, 

Vx~ exp[-pu(]x~j])] = Sign(x~j) ~([x~jt - d) (6) 

Applying this and (5) to (4) with n = 2 gives, for xl < x,), 

0 
- -  In G2*(xl, x2) 

G2*(xl - d, xl)  
= p exp[-flu(lx21 + d[)] G-l(xl) 

_ P exp[_13u(ix2 z _ dl)] G~*(xl + d, x2)G2*(xl, x l  + d) 
G~(xl + d)G2*(xz, x2) (7) 

In this section we show that with (5), the form of the BBGKY hierarchy for 
n /> 2 does not depend on n. That is, we show that for n > 2, all equations 
generated by the hierarchy are identical to (7). 

With (6) and (4) we have that for n /> 2, the BBGKY hierarchy is 

- -  In G.*(xl ..... x~) 

= p exp -13 u(Ixj - x l  + dI) G~*(xl x~) 
J = 2  ~ ' " '  

G~+I(xl ..... x~, x l  + d) 
- p exp - t3 u(lxy - x~ - d]) (8) G~*(x~,..., x~) j = 2  
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and this pertains to all orderings. We suppose that the particles have the 
particular ordering x~ < x2 < ' "  < x., and use the fact that since the correla- 
tion functions determine probability densities, 

G*+ ~(x~ ..... x~, y) * -~ G,~+l(y, Xl,... ,  x,~). 

As we have already mentioned, any chosen ordering will remain unchanged 
for all interparticle separations because of (lc). By repeated application of 
(5) we find 

Gn*(xl ..... x~) = G2*(x~- I, x . )  G2*(x.-2, x,~-l) G2*(x2, xs) G2*(xl, xz) 
61(x._ i) a l (x ._  ~) ~(x~)  

(9a) 

G*+ z(xl - d, x l  ..... x . )  _ G2*(x.-1, x . )  G,~*(xl - d, xl , . . . ,  x,~_ 1) 
G,~*(xl ..... x,~) GI(x,-1) G,~*(xl,..., xn) 

= G2*(x~ - d, x l)  (9b) 
61(x~) 

and 

G*+I(xl, x l  + d, x2,..., x,~) G2*(x,~-l, x,~) G,~*(xt, x l  + d, x2,..., 5c~_1) 
Gn*(xl ..... x , )  GI(x,~ _ i) G,~*(xl,..., x,~) 

= G2*(x~ + d, x2)G2*(x~, x~ + d) (9c) 
G2*(xl, x2)Gl(x~ + d) 

Using these and the fact that for the ordered array all the exponential factors 
in (8) are unity except those involving [x2~ _ d], we obtain the result that 
with the SZK recursion relation, (8) and (7) are identical. 

Therefore with (5) the infinite hierarchy reduces to 

f V ~  exp[-fiu(xl~)] (lOa) 
G2*(x1, x2) 

V~ In G~(x~) = p dx ,2  G~(x~) 

and 

Vxl In G2*(xl, x~) 

f Vxl exp[-fiu(xl~)] (10b) 
Ga*(xI, X2~ XS) 

= p dxa exp[-fiu(x23)] G2*(xl, x2) 

These coupled equations are the subject of our investigation. 
Since we wish to study the solution of the pair for all of one-dimensional 

space, we must consider configurations where xl > x2 and also where x2 > 
xl. By considering both cases we will, with the SZK relation, have considered 
all orderings of the infinite one-dimensional system. Applying (6) to (10a) 
gives 

d In G~(xl) = pG2*(xl, x l  - d) pG2*(xl, x l  + d) 
- ( 1 1 )  

dxl GI(xl) GI(xl) 
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Using the SZK recursion relation in (10b) yields the following equations 
depending on whether x~2 > 0 or x21 > 0: 

O In G2*(xl,  x2) = pG2*(& - d, xOG2*(x2, x l  - d) 
axl G2*(xl,  x2)GI(xl  - d) 

pG2*(&, xz + d) 
- GI(xl)  , xz2 > 2d 

a In G2*(x~, x2) pG2*(x~, x l  + d) 
= 0 <~ x12 < 2d 

axl G l ( x J  ' 

a In G2*(xl,  x2) = pG2*(xz - d, x l )  
ax~ Gz(x~) 

and 

pG2*(xl + d, x2)G2*(xl,  x l  + d) 
Gl(x l  + d)G2*(xl ,  x2) ' 

(12a) 

(12b) 

x~l > 2d (12c) 

a In G2*(xl, x2) = pG2*(xl - d, x2) 0 4 x21 < 2d (12d) 
axl G~(xl) ' 

We must now investigate whether the set (11) and (12), that is, the exact 
BBGKY hierarchy for the pair (Gz, G2), has a unique solution. 

3. U N I Q U E N E S S  

We will, at first, consider the set (11), (12b), and (12d); that is, we 
consider the coupled set of equations for those configurations where two 
particles are separated by distances that are less than twice their length. We 
show that the solution is unique in this interval and then, by using (12a) and 
(12c), we show that there is a unique extension of the solution to all of  one- 
dimensional space. 

From (12b) and (12d) we have that 

In G2*(xl,  x2) = e(xl)  + f (x2) ,  0 ~< x12 < 2d (13a) 

and 

In G2*(xl,  x2) = k(x l )  + l(x=), 0 ~< x21 < 2d (13b) 

Since the probability density determined from G2* must be invariant under 
the exchange of the positions of identical particles, 

" G2*(x~, x~) = a2*(x2, x~) (14) 

and from (13), 

In G2*(xz, x2) = k(xz)  + l(x2), 0 ~< x21 < 2d (15a) 
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and 

In G2*(xl, x2) = l(xz) + k(x2), 0 ~ X12 < 2d (15b) 

Since, for a uniform fluid or perfect crystalline structure, the probability 
density determined from G2* must also remain unchanged if the position 
vectors are reflected through the origin, 

G2*(xl, x2) = G z * ( -  x l ,  - x2) (16) 

We emphasize that it is assumed from the outset that both G~ and G2*(x~, x2) 
are compatible with either a crystalline array or a uniform fluid. Hence we 
can always choose the origin of the coordinate system so that the condition 
(16) is fulfilled. For a uniform fluid we can put the origin anywhere; for a 
perfect crystalline array we put the origin at a lattice site. This, together with 
(15), requires 

l ( - x )  = k(x)  + K (17) 

where K is a constant. Therefore we are led to 

in G2*(xl, x2) = k(xl)  + k ( - x 2 )  + ~, 0 ~< x2~ < 2d (18a) 

In G2*(x~, x2) = k ( - x ~ )  + k(x2) + K, 

and 

Using (11), (12b), (12d), and (15), we find that 

0 <~ x12 < 2d (18b) 

d In Gl(xl)  = dk(xl)  dl(xl) 
- -  + -  ( 1 9 )  

dxl dxl  dxl 

which upon integration and application of (17) leads to 

k ( - x )  = In G~(x) - k(x)  - h - K (20) 

where h is a constant of integration. With this and (18) we obtain 

G2(xl - d, x~) = G~(x~)exp[-;~ - k(xO + k(x~ - d)] (21a) 

and 

G2(xl + d, xa) = G~(x, + d) e x p [ - h  + k ( x ~ ) -  k(xz + d)] (21b) 

Using (19), (21), (12b), and (12d), we obtain 

dGl(xl)  f dxl  P exp[ -A - k(x l )  + k(x l  - d)] 

G~(X~G~(x~) + d ) e x p [ - ; ~  + k(xl)  - k(xz + d)]} (22) 

and 

dk(xl ) /dxl  = p exp[-;~ - k(xl)  + k(x l  - d)] (23) 
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But with (15b), (17), and (21), this can be simplified to 

d In Gl(xl)  
dxl = p{exp [ -A  - k(xO + k(x~ - d)] 

- exp[ -A - k ( - x l )  + k ( - x ~  - d)]} (24) 

Since the right side of (24) involves just k(x), we need only solve (23) to 
obtain a solution of the BBGKY hierarchy over the interval Ix12[ < 2d. 
Therefore, with the SZK recursion relation, we have reduced the hierarchy 
to the solution of one functional differential equation. In general, this equation 
may possess more than one solution. We will now show that for the problem 
in question, a simple physical criterion is sufficient to guarantee that the 
solution is unique. 

It is advantageous to further simplify (23); we multiply it by 

r(x) = exp[k(x)] (25) 

to obtain the linear equation 

dr(x)/dx = pe-~r(x - d) (26) 

Since G2*(xl, x2) must be positive because it determines the pair probability 
density, k(x)  must be a real-valued function and hence, 

r(x) > 0 (27) 

In addition to the invariance of G2*(x~, x2) under the exchange of  the 
particle positions and their reflection through the origin, we also require that 

G2*(xl, x2) = G2*(xl + a, x2 + a) (28) 

We note that this is satisfied for both a translationally invariant function, 
that is, a function corresponding to a uniform fluid, and also for a crystal 
with periodicity a. From (18), (25), and (28) we find 

r(x)/r(x + a) = e ~ (29) 

where t~ is a real constant. Defining the function t(x) by 

r(x) = t(x) exp ( - l zx /a )  (30) 

we obtain the result that t(x) must be periodic, 

and because of (27), 

Putting (30) in (26) gives 

t(x) = t (x  + a) (31) 

t(x) > 0 (32) 

dt(x)/dx = (#/a)t(x) + p[exp( -h  + izd/a)]t(x - d) (33) 
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Considering (31), we write t(x) as the Fourier series, 

t(x) = ~ A(m) exp(i2~rmx/a) (34) 
t t l  

and this together with (33) requires 

A(m)[(i2~rm/a) - (l~/a) - p e x p ( - h  + tzd/a)exp(-i2zrmd/a)] = 0 (35) 

for all m. From (32) we note that the integral of t(x) over one period cannot 
vanish and therefore 

A(0) ~ 0 

which, when applied to (35) yields 

- t z /a  = p e x p ( - h  + t~d/a) (36) 

For A(m) r O, the real and imaginary parts of (35) demand that 

2zrm/a = (t~/a) sin(2~rmd/a) (37a) 

and 

The only solution of (37) is 

and therefore 

1 = cos(2rrmd/a) (37b) 

m = 0  

t(x) = e ~ (38) 

where v is a real constant. Using this, (25), and (30), we find 

k(x)  = -( t~x/a)  + v (39) 

and from (20), 

In Gl(x) = 2v + ~ + K (40) 

but since the normalization of G~(x) is 

lira ( I / L ) f  dx G~(x) = 1 
L-~co  JL 

the constants in (40) must be such that 

2 v +  ~ + • = 0  (41) 

Applying (39) and (41) to (18) we arrive at the pair correlation function, 

G2(xl, x2) = exp[ -A + (l~/a)x21], 0 <~ x21 < 2d (42a) 

and 

G2(xl, x2) = e x p [ - ~  + (t~/a)x12], 0 ~< x~2 < 2d (42b) 
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The constants in (42) can be related to physical quantities; with (36) we 
obtain 

and 

e x p ( - 1 )  = G2(d) e x p ( - > d / a )  (43a) 

t~/a = - p G2(d) (43 b) 

where G2(d) denotes the value of G2 when the particles at x~ and x2 are in 
contact. It is a physically significant quantity because it determines, through 
application of the virial theorem, the pressure P of the system in the limit 
of a uniform fluid, 

5P/p  = 1 + pG2(d) 

With (43), the pair correlation function simplifies to 

G2*(x~, x2) = G 2 ( d ) e x p [ - p G ~ ( d ) ( x 2 ~  - d)J, 0 ~< x21 < 2d (44a) 

and 

G2*(x~, x2) = G 2 ( d ) e x p [ - p G 2 ( d ) ( x a z  - d)], 0 ~< x12 < 2d (44b) 

Since the particle positions are ordered, we can replace x2~ (and x~2) 

and 

Gl(x l )  = 1 (45a) 

G2*(x~, x2) = G 2 ( d ) e x p [ - o G 2 ( d ) ( [ x 1 2  - d[)], Ix121 < 2d (45b) 

This pair of functions is invariant under all translations and therefore it 
corresponds to the uniform fluid. 

The extension of the solution at (45) to all of  one-dimensional space 
goes as follows. Consider, for example, the case where x~ > x2 and suppose 
3d > xa - x2 > 2d. Use the fact that G~(x) = 1 for all x, and (44b) together 
with (12a). These yield 

Ox---~ G2*(x~, x2) = p[G2(d)] 2 exp[-pG2(d)(x~2 - 2d)] 

- pG2(d)G~*(xl ,  x2) (46a) 

which upon integration gives 

G~*(xl ,  x2) = p[G2(d)]2x~ exp[-pG2(d)(x12 - 2d)] 

+ e x p [ -  pG2(d)xl]F(x2) (46b) 

by its modulus. With (40)-(42) we obtain the solution of the BBGKY 
hierarchy for all densities over the interval Ix~2t < 2d, 
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Now we can determine the arbitrary function F(x2) from (44b) by letting 
x~ = x2 + 2d, since G2* is continuous. This and (46b) lead to 

G2*(x~, x2) = p[G2(d)]2(xi2 - 2d)exp[-pG2(d)(x~2 - 2d)] 

+ G2(d)exp[-pG2(d)(x~2 - 2d)] (47) 

Therefore, G2*(x~, x2) is determined in the interval x2 + 3d > xa > x2 + 2d 
and, as in (45), it depends only on Ix~21 in this region. Continuing in this way, 
the value of G2*(x~, x2) can be obtained for all values of xz and x2. The 
resulting formula for G2*(x~, x2) is the same as that found by SZK. It should 
be noted that whereas G2*(x~, x2) is continuous for Ix~21 > d, the nth 
derivative has a simple jump discontinuity at Ix~2[ = nd. 

4. D I S C U S S I O N  

We have shown that the SZK recursion relation (5) exactly reduces the 
infinite BBGKY hierarchy to a pair of coupled equations for the correlation 
functions G1 and G2. We have proven that the pair of equations has a unique 
solution for all densities within the symmetry class defined by (28). This 
symmetry pertains to either a uniform fluid or to a perfect crystal. Since we 
have shown that the solution is such that Gl(x l )=  1 and G2(x~, x2)= 
G~(] x l  - x21) for all positions x~ and x2, we conclude that the infinite BBGKY 
hierarchy, together with the SZK relation, gives the uniform fluid as the 
unique state of the one-dimensional hard-sphere system. 

The uniqueness expresses, in terms of correlation functions, the earlier 
result of Gursey (4~ and van Hove (a~ that there can be no phase transition for 
a one-dimensional system with finite-range forces. The extent to which the 
SZK recursion relation forced this result is not, at present, known to the 
authors, w e  recall that the SZK recursion relation is an exact result, (~ 
independent of the BBGKY equations. 

We conclude with a brief discussion of the uniqueness result in terms of 
solutions of an approximate BBGKY equation developed in a molecular 
theory of crystallization. (2'a~ In that theory we consider the BBGKY hierarchy 
truncated at the first equation, namely the equation for G1 in terms of G2. 
By writing 

G2(x~, x2) = G~(xl)G~(x2)g2(xl, x2) (48) 

where xl and x2 may denote multidimensional vectors, and by imposing the 
constraint that 

g2(xl, x2) = g2(lxl - x21) (49) 

where g2([x~ - x2]) is taken to be the known pair correlation function of the 
uniform fluid, we obtain a closed nonlinear equation. The theory is applied 
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to the hard-sphere system in one, two, and three dimensions, and the existence 
of  solutions for Gl(xl) with all the symmetries required of perfect crystals 
is sought. We prove that the BBGKY equation does in fact have solutions for 
Gl(x) with long-range order and that these bifurcate from the fluid phase 
solution, G~(x) = 1. We show that bifurcation is associated with metastable 
states and that it does not occur at the equilibrium phase transition. The 
predicted bifurcation points in two and three dimensions ~2~ are quite con- 
sistent with the results of computer simulations. Since the bifurcation occurs 
in the metastable region, its existence in the one-dimensional hard-sphere 
system does not necessarily contradict the result that there can be no phase 
transition. However, the uniqueness result in this paper explicitly shows, in 
the one-dimensional case at least, that the existence of bifurcation depends 
on how the BBGKY hierarchy is closed. The validity of  truncating the 
hierarchy for a crystalline phase with (49) has been investigated further~6~; 
using the solutions for G1, thermodynamic properties have been calculated 
away from the bifurcation point. These have been compared to computer 
simulation results for the two- and three-dimensional hard-sphere system and 
to the exact results for the one-dimensional system. 
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